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The axisymmetrization of a two-dimensional non-uniform elliptic vortex is studied in
terms of the growth of palinstrophy, the squared vorticity gradient. First, it is pointed
out that the equation for palinstrophy growth, if written in terms of the strain rate
tensor, has a similar form to that of enstrophy growth in three-dimensions – the
vortex-stretching equation. Then palinstrophy production is analysed, particularly for
non-uniform elliptic vortices. It is shown analytically and verified numerically that
a non-uniform elliptic vortex in general has a quadrupole structure for palinstrophy
production, and that in the positive production regions, vortex filaments are ejected
following the gradient enhancement process for vorticity. Numerical simulations are
conducted for two different initial conditions, compact support and Gaussian vorticity
distributions. These are characterized by distinctly different features of filament ejec-
tion and energy spectra. For both cases, the total palinstrophy production is a good
indicator of the development of small-scale vorticity. In particular for the compact
support case, a possible intermittency mechanism in the filament ejection process is
proposed.

1. Introduction
Two-dimensional turbulence plays a vital role in our understanding of large-

scale geophysical flows subject to rapid rotation and stable stratification. As with
three-dimensional turbulence, the interplay of stretching and diffusion is the most
essential physical mechanism in two-dimensional turbulence. The peculiarity of two-
dimensional turbulence, however, stems from the fact that ‘stretching’ is not associated
with vortex lines but with vorticity contours. In this paper, we shall consider this
interplay and shed new light on it in relation to the gradient enhancement process, a
vital nonlinear mechanism of two-dimensional fluid dynamics. The key ingredient on
which our analysis focuses is the development of the square of vorticity gradient, the
palinstrophy.

The isolated uniform elliptic vortex (the Kirchhoff vortex) continues to attract the
attention of many vorticists, and indeed to play a fundamental and important role in
the study of two-dimensional incompressible flow. The Kirchhoff vortex is a solution
of Euler’s equation consisting of a rotating ellipse of axes a and b with angular
velocity Ω = ωab/(a + b)2, where ω is the uniform vorticity inside the ellipse. The
stability of the Kirchhoff vortex was first presented for the linear case by Love (1893),
who established that Kirchhoff’s vortex with an aspect ratio greater than 3 is linearly
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unstable. The stability analysis for Kirchhoff’s vortex was later extended by Moore
& Saffman (1971).

In contrast to Kirchhoff’s vortex, the non-uniform elliptic vortex is not an exact
solution of Euler’s equation,† but still plays an important role in understanding the
physics of gradient enhancement and vortex axisymmetrization, both of which are
essential ingredients for the mechanism of large-scale vortex motion on the Earth,
including hurricanes. As the pioneering work along this line, we can cite the work
by Melander, McWilliams & Zabusky (1987) and subsequently by the group with
Zabusky (Yao, Zabusky & Dritschel 1995; Dritschel & Zabusky 1996).

Melander et al. (1987) concluded that axisymmetrization of an elliptic vortex is
effected by gradient enhancement of vorticity in the core and eventual ejection of
a vorticity filament, pointing out that a non-uniform elliptic vortex is very unstable
compared with Kirchhoff’s vortex. The exact stability criterion as far as we know is,
however, still an open problem.

We shall show that the above-mentioned mechanism, gradient enhancement and
vorticity ejection, can be interpreted well in terms of the palinstrophy and its produc-
tion. Also palinstrophy production can explain further the micro-mechanism which
may bridge the two physical concepts in two-dimensional Navier–Stokes turbulence:
gradient enhancement and vortex ejection. In particular, it will be shown both analyt-
ically and numerically that a non-uniform elliptic vortex in general has a quadrupole
structure for the palinstrophy production, and that in the positive production regions,
vortex filaments are ejected following the gradient enhancement process for vorticity.
The decay of two-dimensional turbulence is, in general, characterized by a cascade of
enstrophy (squared vorticity) to ever smaller scales. At sufficiently small scales, vis-
cous dissipation balances the cascade, and the vorticity scale-size distribution declines
faster than algebraically. The nonlinear aspects of this process conserve enstrophy,
with spatial regions of strong cascade identified with positive production of palin-
strophy. As the flow evolves, these ‘cascade’ regions comprise a progressively smaller
fraction of the space available to the flow. Although the general aspects of the decay
are deducible from statistical principles, the question of how intense are regions of
palinstrophy production, and their spatial distribution has been entirely deduced from
an examination of direct numerical simulations (DNS). The examination of vorticity
patterns from such DNS frequently shows elliptical or circular vortex structures. Re-
gions of strong palinstrophy production are seen to be spiral filamentary extrusions
from regions of near elliptically organized vorticity. Hence palinstrophy production is
a vital element in understanding of the dynamics of enstrophy cascade – particularly
its extreme intermittent nature.

The paper is organized as follows. In § 2, we review the theory of the basic equation
and palinstrophy production. Numerical results are then presented for two different
sets of initial conditions corresponding to cut-off and Gaussian vorticity distributions
in § 3, and the discussion and summary are given in § 4.

2. Theory
The vorticity equation in two dimensions is

∂ω

∂t
+ (u · ∇)ω = ν∇2ω, (2.1)

† Here by ‘exact solution’ we mean an isolated entity without changing its shape, which does not
rule out the possibility of determining the functional form of evolution with respect to time and
space.
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where u = (u, v) is velocity and ω = ∂v/∂x − ∂u/∂y is vorticity and ν is kinematic
viscosity. Introducing the stream function ψ as

u =
∂ψ

∂y
, v = −∂ψ

∂x
, (2.2)

we can write the equations in the ω,ψ form as

∂ω

∂t
+ J(ω,ψ) = ν∇2, (2.3)

where

J(ω,ψ) =
∂ω

∂x

∂ψ

∂y
− ∂ω

∂y

∂ψ

∂x

is the Jacobian.
Fom (2.3) we can obtain the following equation for the development of palinstrophy:

(∂t + u · ∇)(ω2
x + ω2

y) = 2ωxωy(ψxx − ψyy ) + 2ψxy(ω
2
y − ω2

x)

+2ν(ωx(∇2ω)x + ωy(∇2ω)y) (2.4)

where a subscript means the derivative in that direction. Making use of the rate of
strain tensor,

S =

(
ux

1
2
(uy + vx)

1
2
(uy + vx) vy

)
=

(
ψxy

1
2
(ψyy − ψxx)

1
2
(ψyy − ψxx) −ψxy

)
,

equation (2.4) can be rewritten as

D|∇ω|2
Dt

= −2
∂ω

∂xi

∂ω

∂xj
Sij︸ ︷︷ ︸

Ps

+ 2ν
∂ω

∂xi

∂(∇2ω)

∂xi︸ ︷︷ ︸
Pd

. (2.5)

Batchelor (1969) has presented the formula for the volume average of (2.5).
It is notable that for three-dimensional turbulence an analogous relation holds for

the square of vorticity called enstrophy, namely (Batchelor 1967, p. 277)

D|ω|2
Dt

= 2ωiωjSij + 2νωi∇2ωi, (2.6)

where ω is the magnitude of the vorticity vector, and Sij is the rate of strain tensor in
three dimensions. After neglecting the viscous term (and hereafter we will concentrate
only on the nonlinear term), equation (2.6) provides all the basics for the analysis
of vortex stretching in three-dimensional turbulence. For a summary of research on
this topic, see Tsinober, Shtilman & Vaisburd (1997). The importance of (2.5) as well
as (2.6) is that the Lagrangian dynamics of the magnitude of vorticity and vorticity
gradient is described by the components of these quantities and the field data in an
Eulerian way. The sign of coefficients or the growth rates of the magnitude if we
regard the equations as a self-induction which is deformed by the strain, however,
differ in (2.5) and (2.6). The effect of this difference is yet to be known.

To gain some insight into the dynamics of the development of an elliptic vortex in
general, we assume that the stream function ψ is of the form, ψ(x, y) = F(ax2 + by2),
where F is an arbitrary (differentiable) function, and calculate the functional form of
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Ps. Direct substitution gives

Ps = 64 ab(a− b) xy
×[−4(F ′′)2{(3a3x2 + a2bx2 + ab2y2 + 3b3y2)F ′′ + 2(a2x2 + b2y2)2F ′′′}
+F ′{(3a2 + 10ab+ 3b2)(F ′′)2 + 8(a+ b)(a2x2 + b2y2)F ′′F ′′′

+4(a2x2 + b2y2)2(F ′′′)2}]
≡ ab(a− b) xy G(x2, y2, a, b), (2.7)

where a prime denotes differentiation with respect to z = ax2 + by2, and G is a
functional of F .

From the above, we can observe that:
(i) Ps = 0 for a circular vortex (a = b),
(ii) the x- and y-axes are boundaries which separate the regions of the posi-

tive and negative palinstrophy production, and discounting a dominant effect from
G(x2, y2, a, b), Ps has a quadrupole structure (cf. § 4), and

(iii) if we assume that ab(a− b) has a dominant contribution, under conditions of
a+ b = 1 and a > b, Ps takes the maximum value at a = 1

6
(3 +

√
3).

We should note that a non-zero Ps distribution in an isolated vortex does not
necessarily mean that the vortex is unsteady. In fact, the Lamb–Batchelor dipole
vortex has a symmetric distribution of positive and negative Ps inside, though it is
a steady solution of Euler’s equation and propagates without changing its shape. In
this case, there should be a subtle balance between enhancement and suppression of
vorticity gradient with the steady propagation of the vortex. On the other hand, in two-
dimensional turbulence, the normalized volume average of Ps (the two-dimensional
skewness) measures the strength of the cascade of enstrophy to small scales (see e.g.
Herring et al. 1974).

3. Numerical simulation
As the initial vorticity fields, we use two different sets of smooth distributions.

One is a compact support and the other is a Gaussian distribution. Both have
concentric elliptic equivorticity lines. The assumption of concentric elliptic distribution
of vorticity gives a slightly different testing ground from that for concentric elliptic
stream functions which we assumed in the last section. In fact, the former provides a
similar but non-concentric elliptic stream function which tends to be more and more
circular as the distance from the origin increases. The following numerical simulations
will examine some of the predictions made in the last section, and we shall see that
the concentric elliptic vortices do have the quadrapole structure for Ps.

To integrate the Navier–Stokes equation, the pseudo-spectral method is used with
20482 grid points and dealiasing by the 2/3-rule. The time marching scheme is a
third-order Runge–Kutta method with a fixed time step.

3.1. Compact support

As the initial distribution of vorticity we adopt the one used by Melander et al. (1987),

ω(r) = ω0

[
1− exp

{
−CR0

r
exp

(
− R0

R0 − r
)}]

(0 6 r < R0) (3.1)
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Figure 1. The growth of the volume average of the palinstrophy production Ps in (2.5) for various ini-
tial microscale Reynolds numbers in the compact support case. (Rλ(0) = 2398, 1199, 480, 240, 120, 60
from the top to the bottom.) The values are normalized by the initial value.

where r =
√
ax2 + by2, and ω(r) satisfies ω(r → 0) → ω0, ω(r → R0) → 0, and we

chose C = 2.5608517 so that ω(R0/2) ∼ ω0/2, and the cut-off radius R0 = π/2. As
the initial shape of the ellipse we used (a, b) = (10, 1) which gives the aspect ratio√

10 > 3, which is in the unstable regime in terms of the linear stability for Kirchhoff’s
vortex. Figure 1 is the growth of the volume average of Ps normalized by the initial
value for different initial Reynolds numbers. We see that:

(i) the initial peak becomes higher for larger Reynolds numbers,
(ii) the curves are oscillatory for all the time range calculated, and the amplitude

grows with Reynolds number, and
(iii) a secondary peak develops for larger Reynolds numbers.
To see the behaviour of the ellipse, we show sequential snapshots of equivorticity

contour lines with the value of Ps in (2.5) in figure 2. The sequence is along the
curve for the largest Reynolds number in figure 1 and the times and values of the
total Ps are specified by the cross marks on the curve. In figure 2, the colour code is
normalized by a hyperbolic tangent function so that structures with smaller values of
Ps can be seen.

At t = 0 the ellipse is located with the longer axis vertical, which has the quadrupole
structure in terms of the palinstrophy production with the x- and y-axes as boundaries
just as predicted by the theory in § 2 (figure 2a). In the figure, the first and third
quadrants have negative values of Ps while the second and fourth quadrants have
positive values.

As the ellipse rotates anti-clockwise, the contour lines inside get closer in the positive
quadrants. At the same time the regions are stretched and begin to eject vortex
filaments, while the negative quadrants are pushed concentrically and contracted
(figure 2b) (equivalent observations were reported in Melander et al. (1987) though
they did not use the palinstrophy production and the quadrupole structure of it for
their analysis). It is seen that the outer edge of the spirals has a significant positive
Ps value.
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(a) (b)

(c) (d )

(e) ( f )

(g) (h)

Figure 2. Snapshots of the equivorticity contour lines, with colour indicating the value of the
palinstrophy production for compact support initial conditions. The data are sampled for the
highest Rλ(0) case, and the sampling times are indicated by the cross marks with corresponding
labels on the plot in figure 1.
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Figure 3. The compensated energy spectra, k4E(k) and k3E(k), for the compact support case at
t = 4.76. The latter is shifted down by 3 decades.

The filaments continue to grow, and at the time of figure 2(c) the total Ps takes
the maximum value and the situation corresponds to the case of the most stretched
filaments outside the vortex core; we see only small negative Ps regions mainly
concentrated at the edges of the core.

While the core region rotates and becomes surrounded by the filaments, the negative
Ps regions grow inside (figure 2d). Then even in the filaments the negative Ps regions
appear (figure 2e, f), and eventually the filaments disconnect from the core region
(figure 2g). Figure 2(g) corresponds to the secondary peak of the total PS in figure 1,
and a similarity with the state in figure 2(c) can be observed except for the disconnected
filaments and the slight change in the core boundary. It seems that the vortex filament
ejection for this initial distribution repeats and thus it is in a sense intermittent, and
the intermittency can be verified with the plot of total Ps.

Figure 3 is the energy spectrum at t = 4.76 (close to the time of figure 2h). It
is compensated by the factor k4 and k3 for comparison. (The latter is shifted down
by 3 decades.) These factors k4 and k3 are from the two distinctive theories on
the inertial-range spectrum for two-dimensional turbulence; the former by Saffman
(1971) which is based on discontinuity of vorticity in the shearing motion of fluids,
and the latter by Kraichnan (1967) (with a logarithmic correction) and Batchelor
(1969) which assumes an enstrophy cascade. The one with the factor k4 almost levels,
with fluctuations, in particular in the middle range of the wavenumber, 20 < k < 70.

Figure 4 shows the average of palinstrophy production P (Ps|ω) conditionally
sampled from the set of equal magnitude of vorticity at the times of figures 2(a) to
2(g) (i.e. at the marked positions in figure 1). The figure is plotted as a function of
the magnitude of vorticity, and the values are normalized by the maximum value.
We observe that the palinstrophy production stays almost zero at zero vorticity
(background) and at the maximum vorticity (core). The core has effectively no
palinstrophy production because of cancellation, even though the core contains both
strong positive and negative regions.
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Figure 4. Conditional average of the palinstrophy production in terms of the magnitude of
vorticity for the compact support case. The labels correspond to those in figure 1 and figure 2.

At t = 0, the shape of the conditional average is symmetric and the peak is at the
middle value of vorticity (figure 4a). Until the first peak appears in figure 1, the peak
shifts to the left (figure 4b, c). The shift of the peak to the smaller vorticity means
that the main contribution to the palinstrophy production comes from the scattered
weak vorticity filaments. After passing the first peak in figure 1, the conditional
average shows rather violent oscillations, but with the major peak being still in the
low vorticity region (figure 4d–f). The oscillation disappears by the time of the second
peak in figure 1 (figure 4g). Again after passing the second peak, we can observe
oscillations, in particular in the lower vorticity region. This conditional average of Ps
enables us to verify the intermittency of vortex filament ejection.

3.2. Gaussian distribution

As the second type of vorticity distribution, we use the Gaussian distribution

ω(r) = ω0 exp {−Cr2} (0 6 r < R0) (3.2)

where r =
√
ax2 + by2 and we chose C = 2.8092 . . . so that ω(R0/

√
10) ∼ ω0/2. In

this case, the initial microscale Reynolds number is similar to the compact support
case. The radius is also R0 = π/2. We look at the development of the ellipse in terms
of the same issues as before.

Figure 5 is the growth of the volume average of Ps normalized by the initial value
for different initial Reynolds numbers. We see that:

(i) the initial peak becomes higher for larger Reynolds numbers as before,
(ii) the curves show no oscillation after the peak even for higher Reynolds numbers,

and eventually
(iii) there is no secondary peak.
Figure 6 is sequential snapshots of equivorticity contour lines coloured with the

value of Ps. (The sampling times of the snapshots are marked on the curve for the
largest Reynolds number in figure 5.)
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Figure 5. The growth of the volume average of the palinstrophy production for various initial
microscale Reynolds numbers for the Gaussian case. (Rλ(0) = 2338, 1169, 585, 292 from the top to
the bottom.) The values are normalized by the initial value.

At t = 0 the ellipse is located with the longer axis vertical. Even though the initial
stage of the development is similar to the compact case (figure 6a, b), clearly we can
observe that (i) the filament is less stretched and (ii) the core is more circular than
the compact support case (figure 6c). The circular core persists for a long time and
the filament winds around it quite continuously in space and time (figure 6d–g). In
figure 6(h), however, some defects of the spirals are seen at the root in the core region.
Disconnection of the filaments is observed at the root at the edge of the core where
Ps takes negative values.

Figure 7 is the energy spectrum at t = 4.73 (a) (the time corresponds to that for
figure 6h), and at t = 7.77 (b). Plots of k3E(k) together with k11/3E(k) and k4E(k)
are presented for comparison. At the earlier time levelling of the k3 compensated
spectrum is observed, with fluctuations in the middle range of the wavenumber,
around 20 < k < 60. At the later time, however, a normalization k11/3E(k) by Gilbert
(1988) and Moffatt (1990) which is based on the existence of spiral structures seems
to work better.

Similarly to figure 4, figure 8 shows the average of palinstrophy production P (Ps|ω)
conditionally sampled from the equal magnitude set of vorticity at the times corre-
sponding to figure 6(a–g) (i.e. at the marked positions in figure 5).

Again we see that the palinstrophy production stays almost zero at zero vorticity
(background) and at the maximum vorticity (in the core). Also the main peak shifts
to the smaller vorticity. Unlike the previous case, however, the average shows clear
oscillation (figure 8e–h). It is almost certain that the oscillation is due to the spirals.
The amplitude of the oscillation decreases except for the main peak (figure 8h) and we
expect that only the main peak survives asymptotically as time goes on. The contrast
seems interesting between the oscillatory behaviour in space and the rather smooth
development of the total palinstrophy in time.
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Figure 6. Snapshots of the equivorticity contour lines with colour indicating the value of the
palinstrophy production for Gaussian initial conditions. The data are sampled for the highest Rλ(0)
case, and the sampling times are indicated by the cross marks with the labels on the plot in figure 5.
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Figure 7. The compensated energy spectrum, k3E(k), k11/3E(k) and k4E(k), for the Gaussian initial
condition (a) t = 4.73 and (b) t = 7.77. The last two are shifted down by 5 decades each.
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Figure 8. Conditional average of the palinstrophy production in terms of the magnitude of
vorticity for the Gaussian case. The labels correspond to those in figure 5 and figure 6.

4. Discussion
Figure 9 shows a snapshot of vorticity contours (black: positive; red: negative)

from the pseudo-spectral simulation with a random Gaussian initial condition which
is coloured as before by the value of the palinstrophy production. The domain shown
is the one-eighth centre-cut of the total domain of 20482 grid points.

We see a number of elliptic vortices which have a quadrupole structure of the
palinstrophy production just as the single elliptic vortex in the preceding section.
The abundance of non-uniform elliptic vortices which carry very similar quadrupole
structure to a single elliptic vortex suggest the applicability of the present simplified
theory to more general situations including turbulence.
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Figure 9. Snapshot of vorticity contours (black: positive; red: negative) colored by the value of
the palinstrophy production from the pseudo-spectral simulation with a random Gaussian initial
condition.

One of the major differences for the random case is that the filaments ejected
from elliptic vortices sometimes maintain strong palinstrophy production as well as
vorticity due to the nonlinear interaction from other vortices and filaments in the
background flow.

It is interesting to note that a non-uniform elliptic vortex in general has the
quadrapole structure for palinstrophy production, Ps, and that the second and fourth
quadrants in a (positive) elliptic vortex are fated to undergo positive stretching even
without any effect of outer flows. Here we would like to repeat and summarize
the scenario of the vorticity gradient enhancement and subsequent filament ejection.
First, vorticity gradient enhancement by positive palinstrophy production results in
overtaking of contour lines, which is reminiscent of the front (or the singularity) genesis
in fluids. Owing to incompressibility, the squashing of the region is compensated by
ejecting and stretching a vorticity filament from the tip. The direction of stretching is
determined as perpendicular to the maximum vorticity gradient.
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The near final stage of two-dimensional turbulence in a bounded domain is an
interesting subject. From a previous study, the final stage may be a vortex lattice
with only one vortex in each fundamental cell (Matthaeus et al. 1990). From the
view point of palinstrophy production, a circular (or axisymmetric) vortex produces
no palinstrophy, and is qualified as a steady-state solution of the two-dimensional
Navier–Stokes equations. Perhaps shielding by the cloud of (weak) palinstrophy
production maintains the circular shape of a vortex even in the earlier stage of
development.†

It is still an open question how much can be deduced about the statistics of two-
dimensional turbulence in terms of the present theory on palinstrophy production.
One way forward we can propose is (as we did in § 2) to develop the stretching analysis
in two-dimensional turbulence and compare with three-dimensional turbulence. The
governing equation for stretching in two-dimensions (2.5) has a similar form in three-
dimensions (2.6), but with the obvious difference that the former has an opposite
sign for the production term to the latter. The essential difference in the stretching
due to this sign difference should be studied in the future. In any event, however,
we can say and have verified that the non-uniform elliptic vortex is the simplest
non-trivial building block found yet to construct the theory which elucidates the
stretching mechanism in two-dimensional turbulence.
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on two-dimensional turbulence. Y. K. acknowledges the support by a Grant-in-Aid
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